Dr. Example Researcher
A neuron computes:
$$y = f\left(\sum_{i=1}^{n} w_i x_i + b\right)$$Where:
ReLU (Rectified Linear Unit):
$$f(x) = \max(0, x)$$Sigmoid:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$Softmax:
$$\text{softmax}(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$Note:
class TransformerBlock(nn.Module):
def __init__(self, d_model, n_heads):
super().__init__()
self.attention = MultiHeadAttention(d_model, n_heads)
self.ffn = FeedForward(d_model)
self.norm1 = LayerNorm(d_model)
self.norm2 = LayerNorm(d_model)
def forward(self, x):
x = x + self.attention(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
| Model | Accuracy | F1 Score | Latency |
|---|---|---|---|
| Baseline | 82.3% | 0.81 | 45ms |
| Ours (small) | 89.7% | 0.88 | 38ms |
| Ours (large) | 94.2% | 0.93 | 52ms |
| Component | Accuracy Drop |
|---|---|
| w/o Attention | -8.3% |
| w/o FFN | -4.1% |
| w/o LayerNorm | -2.7% |
| w/o Residual | -6.5% |
The training converged smoothly:
$$\mathcal{L} = -\sum_{i=1}^{N} y_i \log(\hat{y}_i)$$ Cross-entropy loss with label smoothing (α=0.1)📧
📄 Full paper:
Note: Contact information and resources for follow-up questions. Open for collaboration on future research directions.